Test: Difference between revisions

From WebGL Public Wiki
Jump to navigation Jump to search
Created page with " Math test <math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}..."
(No difference)

Revision as of 21:02, 2 August 2012

Math test


erfc(x)=2πxet2dt=ex2xπn=0(1)n(2n)!n!(2x)2n

Math test