Efficient Binary Meshes in X3DOM refined: Not just images anymore! Johannes Behr Yvonne Jung Tobias Franke Timo Sturm johannes.behr@igd.fraunhofer.de # **Declarative (X)3D in HTML** ### Embed a live scenegraph in the DOM ``` <!DOCTYPE html > <html > <body> <h1>Hello X3DOM World</h1> <x3d xmlns='...' profile='HTML' > <scene> <shape> <box></box> </shape> </scene> </x3d> </body> </html> ``` ### Declarative (X)3D in HTML Large Datasets: Issue of the current approach Real 3D applications tend to be huge HTML-files Unpleasant non-interactive user experience Browser are not build to hold GByte of DOM attribute data (e.g. multiple data copies) Reference external sub-trees X3D "Inline" node black/white-box interface? xml/json parser architecture Binary XML decompression x3z: (ISO) Decoding on JS-Level x3db: (ISO) Fast Infoset: No UA or JS-lib EXI: (W3C) Even worse #### DOM holds structure and data ``` <! DOCTYPE html>~ <html>- <head>- <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link>- <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script> </head>- <body>¬ <x3d id='3dstuff' width='400px' height='400px'>- <scene DEF='scene'>- <shape>¬ <appearance>- <material diffuseColor='#FF0000'></material>- </appearance>¬ <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre> 9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'> <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</pre> 0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordinate> <normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</p> 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></nprmal> </indexedTriangleSet>¬ </shape>¬ </scene>¬ </x3d>- </body>- </html>- ``` ### DOM holds structure and data More than 95% are usually unstructured data ``` <!DOCTYPE html>- <html>¬ <head>- <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link> <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script> </head>¬ <body>¬ <x3d id='3dstuff' width='400px' height='400px'>- <scene DEF='scene'>- <shape>- <appearance>- <material diffuseColor='#FF0000'></material>¬ </appearance>¬ <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre> 9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'> <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</p> 0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordingte> <normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</p> 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></normal>- </indexedTriangleSet>- </shape>¬ </scene>- </x3d>- </body>- </html>- ``` ### Mesh Container in X3DOM Follow the generic X3DOM approach: Evaluate the general "Declarative 3D" use cases and requirements while providing a prototype system which works on todays W3C/JavaScript/WebGL layer **General Question**: What Container are useful in todays W3C technology stack to support the "Generic Requirements" - binary - regular structure - fast transmission, decoding - must map to GPU container/buffer #### "General Goals" #### **Increased User experience** User does not have to wait until the document is loaded #### **Increased Polygon count** From 0.3 Million to 10 Million Polygon More data can be delivered in acceptable time #### **Increased Communication speed** Incremental Updates (similar to jpeg decompression) ### Separate structure and data #### DOM / HTML Document #### Binary asset resources #### **Images and Videos** - Encodes int/float arrays (e.g. coordinate, normal, texCoords, generic-attributes) in RGBA-images - Multiple images per array - Multiple images per scene #### **Explicit Binary Container** - Directly loaded to TypedArrays - Data assignment in JS - Multiple arrays per file - Multiple files per scene # **3D Geometry in Images** #### HeightMap 2D (semi)regular grid with 1D Height-Data **Geometry Images** (Hoppe, Siggraph 2002) **Surface usually irregular triangle meshes** => Remeshing to (semi)regular grid pro: up/down sampling operation con: genus-zero surface, parametrization distortion, border-handling Latest development focus on multi-patch approaches and LOD structures (see "Adaptive Quad patches" paper) #### **SL Sculpted Prims** Similar properties as Geometry Images # Idea: Sequential Image Geometry Implicit mesh does not correlate with the mesh topology **Application** Supports: Transmission, compression (partially), rendering, ... Does not support: Scaling of SIG container Advantage: Works with any mesh type and keeps the original topology ### /<video> as generic binary container Normalization and **linear Quantization** to 2ⁿ Bytes: n is error/user controlled ``` Uses multiple images to distribute precision (e.g. 1 Image -> 8bit, 2 images -> 16bit, ...) ``` **LOD** and streaming of precision (e.g. closer objects use higher precision) **Decompression** for free (only lossless png is useful right now) **Streaming** updates for free: WebGL/X3DOM support <video> Browser/Server well optimized to handle **large number of images and parallel downloads** of image => Great user experience Developer, Browser, Server and W3C love images and video: Content is HTML + image/video-resource data # Multi image vertex property encoding # Data decoding and rendering **GPU**: Single VBO, Extremely fast visualization with Vertex Textures Units, precision grows until vertex texture limit is reached CPU/GPU: WebGL without Vertex Texture Unit support/ Flash 11 ### **Binary Container** Powerful abstraction for efficient data encoding for Web-apps Uses new XHR ability to load binary ArrayBuffer Maps to **TypedArray/GPU buffer** No JS-Interaction for decoding Could be used for RESTful mesh attribute access e.g. http://meshLand.com/mesh/32/coordinate.bin Support quantization with GPU based decoder (WebGL can handle 8 and 16 bit TypedArrays) Standard rendering and shader handling (Does not need support for Vertex Textures for GPU decoding as SIG) Support also incremental updates through bit distribution over multiple files Need bit-compositing in JS WebWorker and Transferables can help to decode in parallel ### **Priority Controlled Rendering** Priority controlled **download manager and renderer** **Content**: Use/Application given to focus on specific objects **View**: Objects which are in the view frustum Size: Objects which are bigger in world space **Data-Level**: Data which represents a more basic level get higher priority **External**: External Culling/Visibility service controls priority - Content Factor - View Factor - Size Factor ### **Priority Controlled Rendering** Priority controlled **download manager and renderer** **Content**: Use/Application given to focus on specific objects **View**: Objects which are in the view frustum Size: Objects which are bigger in world space **Data-Level**: Data which represents a more basic level get higher priority **External**: External Culling/Visibility service controls priority - Content Factor - View Factor - Size Factor # "Out of Core" Rendering with PCR ### **Service Controlled PCR** Uses bidirectional WebSocket connection to distribute computation "Out of Browser" based Rendering; Using the X3DOM BinaryGeometry Container BMW F30, 80 Million Polygon Model # **Application Example – Desktop** # **Application Example – Mobile** ### **Combination with textures** Single container type can minimize Donwload-Management The Fair Sil Frankricht/Hall Haven ### Low Bandwidth / Mobile device Online BG-LOD Examples over 3G ### **Implementation** #### **Decoding & Rendering:** Open source and Part of X3DOM, available on github http://www. x3dom.org #### Patch creation and encoding: Closed source aopt/instantReality 2.2 (release 3. August 2012) Windows, Mac & Linux http://www.instantreality.org New "Large Datasets" tutorial on x3dom.org page Free for "non commercial use" # Patch creation and encoding Using the instantReality/aopt tool ``` Scene/Mesh statistics ``` aopt –I foo.x3d –p aopt –I foo.x3d –J #### Patch creation: aopt –I foo.x3d –u –F subtree:"maxtris(20000)" –N foo-opt.x3d subtree: Single Node (DEF/id), Node-Type or "Scene" #### BinaryGeometry from PrimitiveSet mkdir binGeo aopt –i foo-opt.x3d –G binGeo/:sal –x foo-bg.x3d –N foo-bg.html #### Tutorial online after siggraph! ### **Thanks** Demos: http://examples.x3dom.org