
Johannes Behr
Yvonne Jung
Tobias Franke
Timo Sturm

johannes.behr@igd.fraunhofer.de

Efficient Binary Meshes in X3DOM
refined: Not just images anymore!

Online Submission ID: paper1001

Using Images and Explicit Binary Container for Efficient and Incremental
Delivery of Declarative 3D Scenes on the Web

Figure 1: Two different high-resolution models visualized with X3DOM in the Browser. Left: architectural walk-through model of Hall 11
of the Fair of Frankfurt – represented and rendered using our sequential image geometry (SIG) approach for fast content delivery and data
compression on the Web. Right: 3D-scanned historical object rendered as triangle mesh and as point set using our SIG approach.

Abstract1

JSON, XML based formats (e.g. X3D or Collada) and Declarative2

3D approaches [W3C (Community Group) 2012] share some ben-3

efits but also one major drawback: all encoding schemes store the4

scene-graph and vertex-data in the same file-structure; unstructured5

raw binary data is found within descriptive elements of the scene.6

Browsing systems therefore have to download all elements (includ-7

ing every single coordinate) before being able to further process the8

structure of the document.9

We separate the structured scene information and unstructured10

vertex-data to increase the user experience and overall performance11

of the system by introducing two new referenced containers which12

encode external mesh-data as Sequential Image Geometry (SIG) or13

TypedArray based Binary Geometry (BG). We discuss compres-14

sion, rendering and application results and introduce a novel data15

layout for image geometry data which supports incremental up-16

dates, arbitrary input meshes and GPU decoding.17

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional18

Graphics and Realism—Virtual Reality I.3.6 [Methodology and19

Techniques]: Standards—Languages20

Keywords: X3D, Declarative 3D, HTML5, WebGL, DOM, Web21

Integration, Image Geometry, Typed Array, Mesh Compression22

1 Introduction23

The expected user experience of web pages and web applications is24

quite different to traditional desktop or mobile applications: there25

is no explicit and visible application startup or data preparation and26

processing step. Everything starts with a single click, which leads27

to an instantaneous user experience, where inconsistent or partial28

presentations are accepted when loading the page (e.g. images are29

missing, layout is not yet final). This asks for very compact doc-30

uments and data chunks that can be interpreted and used for the31

visualization before all data is fully delivered to the client.32

With X3DOM, a DOM-based integration model for declarative33

(X)3D in HTML5 was proposed [Behr et al. 2011; Behr et al. 2010]34

which allows a seamless integration of 3D content into the HTML35

document model by utilizing standard Web APIs. The approach is36

one of the prototype systems used for the evaluation of use cases37

and requirements in the declarative 3D community group [W3C38

(Community Group) 2012]. However, for real world applications39

with large 3D data sets such declarative approaches, which inte-40

grate the 3D data into the HTML DOM, soon lead to huge HTML41

documents (see Figure 2). This in turn causes unpleasant, non-42

interactive user experiences due to long loading times and non-43

responsive web pages, because Web Browsers are not build to parse44

DOM attribute data sets beyond several megabytes in size.45

Providing the data not just in one document but in multiple data46

sets using the X3D compliant Inline mechanism [Web3D Consor-47

tium 2011] is unfortunately not a suitable solution. First of all, an48

<inline> element externalizes a complete subtree (with all its49

transformation groups, materials, etc.) instead of the raw vertex50

attribute data. Moreover, such external sub-trees require an imple-51

mentation of an additional XML or JSON parser architecture. Sec-52

ond, X3D Inline nodes by design hide their content from the appli-53

cation developer via a black-box interface, which contradicts to the54

requirement that the whole DOM tree needs to be dynamically ma-55

nipulatable. In other words, a web author would expect a white-box56

interface instead. Third, external X3D files that are referenced via57

the Inline mechanism are, like HTML, typically ASCII-encoded to58

be human readable and therefore the file size itself is an issue, even59

when editing the file.60

Since obviously this vast amount of mesh data typically is not61

manipulated via DOM scripting anyway but (pre-)processed in a62

modeling tool, binary compressed XML/ X3D files that reduce the63

data transmission issue could also be an option here. Examples64

for binary XML compression are x3db (the FastInfoSet-based [Sun65

2004] binary encoding for X3D [Web3D Consortium 2011]), the66

ISO standard x3z, and the W3C format EXI [W3C 2011], which67

are both streamable in general but not useful for progressive ap-68

proaches because of the single document and parser model. All of69

them require decoding at the level of JavaScript and for most of70

them no JavaScript library for binary XML decompression is avail-71

able. Finally, in order to make the tree structure accessible to the72

application developer, all data (including the raw mesh data) will be73

provided as part of the DOM and therefore increases the document74

structure similarly.75

Hence, we propose another solution: we do not split the scene-76

graph into sub-graphs, but divide the lightweight, structured infor-77

mation from the heavy, unstructured data (not only images but also78

vertex attributes). The light structured information such as transfor-79

1

Declarative (X)3D in HTML
Embed a live scenegraph in the DOM

<!DOCTYPE html >
<html >

 <body>
 <h1>Hello X3DOM World</h1>
 <x3d xmlns=‘…’ profile=‘HTML’ >
 <scene>
 <shape>
 <box></box>
 </shape>
 </scene>
 </x3d>
 </body>

</html>

Declarative (X)3D in HTML
Large Datasets: Issue of the current approach

Real 3D applications tend to be huge HTML-files
 Unpleasant non-interactive user experience
 Browser are not build to hold GByte of DOM
attribute data (e.g. multiple data copies)

Reference external sub-trees
 X3D “Inline” node
 black/white-box interface?
 xml/json parser architecture

Binary XML decompression
 x3z: (ISO) Decoding on JS-Level
 x3db: (ISO) Fast Infoset: No UA or JS-lib
 EXI: (W3C) Even worse

DOM holds structure and data

DOM holds structure and data
More than 95% are usually unstructured data

Mesh Container in X3DOM

Fraunhofer IGD / Autor / Abteilung

Follow the generic X3DOM approach:
 Evaluate the general “Declarative 3D” use cases and
requirements while providing a prototype system which works
on todays W3C/JavaScript/WebGL layer

General Question: What Container are useful in todays W3C

technology stack to support the “Generic Requirements”
 - binary
 - regular structure
 - fast transmission, decoding
 - must map to GPU container/buffer

“General Goals”

Fraunhofer IGD / Autor / Abteilung

Increased User experience
 User does not have to wait until the document is loaded

Increased Polygon count

 From 0.3 Million to 10 Million Polygon
 More data can be delivered in acceptable time

Increased Communication speed

 Incremental Updates (similar to jpeg decompression)

DOM / HTML Document Binary asset resources

Fraunhofer IGD / Autor / Abteilung

Explicit Binary Container

-  Directly loaded to TypedArrays
-  Data assignment in JS
-  Multiple arrays per file
-  Multiple files per scene

Images and Videos

-  Encodes int/float arrays (e.g.

coordinate, normal, texCoords,
generic-attributes) in RGBA-images

-  Multiple images per array
-  Multiple images per scene

Separate structure and data
HTML element reference external binary data element

3D Geometry in Images

HeightMap
 2D (semi)regular grid with 1D Height-Data

Geometry Images (Hoppe, Siggraph 2002)

 Surface usually irregular triangle meshes
 => Remeshing to (semi)regular grid
 pro: up/down sampling operation
 con: genus-zero surface, parametrization distortion, border-handling
 Latest development focus on multi-patch approaches and LOD structures
 (see “Adaptive Quad patches” paper)

SL Sculpted Prims

 Similar properties as Geometry Images

Idea: Sequential Image Geometry

Implicit mesh does not correlate with the mesh topology

Application

 Supports: Transmission, compression (partially), rendering, ...
 Does not support: Scaling of SIG container

Advantage: Works with any mesh type and keeps the original topology

/<video> as generic binary container

Normalization and linear Quantization to 2ˆn Bytes: n is error/user controlled

Uses multiple images to distribute precision

(e.g. 1 Image -> 8bit, 2 images -> 16bit, …)
LOD and streaming of precision (e.g. closer objects use higher precision)

Decompression for free (only lossless png is useful right now)
Streaming updates for free: WebGL/X3DOM support <video>

Browser/Server well optimized to handle large number of images and parallel

downloads of image => Great user experience
Developer, Browser, Server and W3C love images and video:

Content is HTML + image/video-resource data

Multi image vertex property encoding

Data decoding and rendering

GPU: Single VBO, Extremely fast visualization with Vertex Textures Units,
 precision grows until vertex texture limit is reached

CPU/GPU: WebGL without Vertex Texture Unit support/ Flash 11

Binary Container
Powerful abstraction for efficient data encoding for Web-apps

Uses new XHR ability to load binary ArrayBuffer
Maps to TypedArray/GPU buffer
No JS-Interaction for decoding
Could be used for RESTful mesh attribute access

 e.g. http://meshLand.com/mesh/32/coordinate.bin
Support quantization with GPU based decoder

 (WebGL can handle 8 and 16 bit TypedArrays)
Standard rendering and shader handling

 (Does not need support for Vertex Textures for GPU decoding as SIG)
Support also incremental updates through bit distribution over multiple files

 Need bit-compositing in JS
 WebWorker and Transferables can help to decode in parallel

Priority Controlled Rendering

Priority controlled download manager and renderer
 Content: Use/Application given to focus on specific objects
 View: Objects which are in the view frustum
 Size: Objects which are bigger in world space
 Data-Level: Data which represents a more basic level get higher priority
 External: External Culling/Visibility service controls priority

Priority Controlled Rendering

Priority controlled download manager and renderer
 Content: Use/Application given to focus on specific objects
 View: Objects which are in the view frustum
 Size: Objects which are bigger in world space
 Data-Level: Data which represents a more basic level get higher priority
 External: External Culling/Visibility service controls priority

“Out of Core” Rendering with PCR

Service Controlled PCR
Uses bidirectional WebSocket connection to distribute computation

Application Example – Desktop

Application Example – Mobile

Combination with textures
Single container type can minimize Donwload-Management

Low Bandwidth / Mobile device
Online BG-LOD Examples over 3G

Implementation

Fraunhofer IGD / Autor / Abteilung

Decoding & Rendering:
 Open source and Part of X3DOM, available on github
 http://www. x3dom.org

Patch creation and encoding:

 Closed source aopt/instantReality 2.2 (release 3. August 2012)
 Windows, Mac & Linux
 http://www.instantreality.org
 New “Large Datasets” tutorial on x3dom.org page
 Free for “non commercial use”

Patch creation and encoding
Using the instantReality/aopt tool

Fraunhofer IGD / Autor / Abteilung

Scene/Mesh statistics
 aopt –I foo.x3d –p
 aopt –I foo.x3d –J

Patch creation:

 aopt –I foo.x3d –u –F subtree:”maxtris(20000)” –N foo-opt.x3d
 subtree: Single Node (DEF/id), Node-Type or “Scene”

BinaryGeometry from PrimitiveSet

 mkdir binGeo
 aopt –i foo-opt.x3d –G binGeo/:saI –x foo-bg.x3d –N foo-bg.html

Tutorial online after siggraph!

Thanks

Fraunhofer IGD / Autor / Abteilung

Demos: http://examples.x3dom.org

