Efficient Binary Meshes in X3DOM refined: Not just images anymore!

Johannes Behr Yvonne Jung Tobias Franke Timo Sturm

johannes.behr@igd.fraunhofer.de

Declarative (X)3D in HTML

Embed a live scenegraph in the DOM


```
<!DOCTYPE html >
<html >
  <body>
     <h1>Hello X3DOM World</h1>
       <x3d xmlns='...' profile='HTML' >
          <scene>
            <shape>
               <box></box>
            </shape>
          </scene>
       </x3d>
  </body>
</html>
```


Declarative (X)3D in HTML

Large Datasets: Issue of the current approach

Real 3D applications tend to be huge HTML-files

Unpleasant non-interactive user experience

Browser are not build to hold GByte of DOM attribute data (e.g. multiple data copies)

Reference external sub-trees

X3D "Inline" node

black/white-box interface?

xml/json parser architecture

Binary XML decompression

x3z: (ISO) Decoding on JS-Level

x3db: (ISO) Fast Infoset: No UA or JS-lib

EXI: (W3C) Even worse

DOM holds structure and data


```
<! DOCTYPE html>~
<html>-
  <head>-
   <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link>-
    <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script>
  </head>-
  <body>¬
    <x3d id='3dstuff' width='400px' height='400px'>-
      <scene DEF='scene'>-
        <shape>¬
          <appearance>-
            <material diffuseColor='#FF0000'></material>-
          </appearance>¬
          <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre>
9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'>
            <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</pre>
0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651
0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordinate>
            <normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</p>
0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393
0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></nprmal>
          </indexedTriangleSet>¬
        </shape>¬
      </scene>¬
    </x3d>-
  </body>-
</html>-
```

DOM holds structure and data

More than 95% are usually unstructured data

```
<!DOCTYPE html>-
<html>¬
  <head>-
    <link rel='stylesheet' type='text/css' href='http://www.x3dom.org/x3dom/release/x3dom.css'></link>
    <script type='text/javascript' src='http://www.x3dom.org/x3dom/release/x3dom.js'></script>
  </head>¬
  <body>¬
    <x3d id='3dstuff' width='400px' height='400px'>-
      <scene DEF='scene'>-
        <shape>-
          <appearance>-
            <material diffuseColor='#FF0000'></material>¬
          </appearance>¬
          <indexedTriangleSet solid='false' index='0 1 2 1 3 2 1 4 3 5 4 1 0 5 1 0 6 5 6 7 5 5 7 4 7 8 4 7 9 8 7 6 9 6 10 9 10 11</pre>
9 10 2 11 10 0 2 6 0 10 11 2 3 8 11 3 4 8 3 11 8 9'>
            <coordinate point='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214</p>
0.850651 0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651
0.276393 0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></coordingte>
            <normal vector='0.447214 0 -0.894427 0.447214 0.850651 -0.276393 1 0 -0 0.447214 0.525731 0.723607 -0.447214 0.850651</p>
0.276393 -0.447214 0.525731 -0.723607 -0.447214 -0.525731 -0.723607 -1 0 0 -0.447214 0 0.894427 -0.447214 -0.850651 0.276393
0.447214 -0.850651 -0.276393 0.447214 -0.525731 0.723607'></normal>-
          </indexedTriangleSet>-
        </shape>¬
      </scene>-
    </x3d>-
  </body>-
</html>-
```

Mesh Container in X3DOM

Follow the generic X3DOM approach:

Evaluate the general "Declarative 3D" use cases and requirements while providing a prototype system which works on todays W3C/JavaScript/WebGL layer

General Question: What Container are useful in todays W3C technology stack to support the "Generic Requirements"

- binary
- regular structure
- fast transmission, decoding
- must map to GPU container/buffer

"General Goals"

Increased User experience

User does not have to wait until the document is loaded

Increased Polygon count

From 0.3 Million to 10 Million Polygon More data can be delivered in acceptable time

Increased Communication speed

Incremental Updates (similar to jpeg decompression)

Separate structure and data

DOM / HTML Document

Binary asset resources

Images and Videos

- Encodes int/float arrays (e.g. coordinate, normal, texCoords, generic-attributes) in RGBA-images
- Multiple images per array
- Multiple images per scene

Explicit Binary Container

- Directly loaded to TypedArrays
- Data assignment in JS
- Multiple arrays per file
- Multiple files per scene

3D Geometry in Images

HeightMap

2D (semi)regular grid with 1D Height-Data

Geometry Images (Hoppe, Siggraph 2002) **Surface usually irregular triangle meshes**

=> Remeshing to (semi)regular grid

pro: up/down sampling operation

con: genus-zero surface, parametrization distortion, border-handling

Latest development focus on multi-patch approaches and LOD structures

(see "Adaptive Quad patches" paper)

SL Sculpted Prims

Similar properties as Geometry Images

Idea: Sequential Image Geometry

Implicit mesh does not correlate with the mesh topology

Application

Supports: Transmission, compression (partially), rendering, ...

Does not support: Scaling of SIG container

Advantage: Works with any mesh type and keeps the original topology

/<video> as generic binary container

Normalization and **linear Quantization** to 2ⁿ Bytes: n is error/user controlled

```
Uses multiple images to distribute precision (e.g. 1 Image -> 8bit, 2 images -> 16bit, ...)
```

LOD and streaming of precision (e.g. closer objects use higher precision)

Decompression for free (only lossless png is useful right now)

Streaming updates for free: WebGL/X3DOM support <video>

Browser/Server well optimized to handle **large number of images and parallel downloads** of image => Great user experience

Developer, Browser, Server and W3C love images and video:

Content is HTML + image/video-resource data

Multi image vertex property encoding

Data decoding and rendering

GPU: Single VBO, Extremely fast visualization with Vertex Textures Units, precision grows until vertex texture limit is reached

CPU/GPU: WebGL without Vertex Texture Unit support/ Flash 11

Binary Container

Powerful abstraction for efficient data encoding for Web-apps

Uses new XHR ability to load binary ArrayBuffer

Maps to **TypedArray/GPU buffer**

No JS-Interaction for decoding

Could be used for RESTful mesh attribute access

e.g. http://meshLand.com/mesh/32/coordinate.bin

Support quantization with GPU based decoder

(WebGL can handle 8 and 16 bit TypedArrays)

Standard rendering and shader handling

(Does not need support for Vertex Textures for GPU decoding as SIG)

Support also incremental updates through bit distribution over multiple files

Need bit-compositing in JS

WebWorker and Transferables can help to decode in parallel

Priority Controlled Rendering

Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects

View: Objects which are in the view frustum

Size: Objects which are bigger in world space

Data-Level: Data which represents a more basic level get higher priority

External: External Culling/Visibility service controls priority

- Content Factor
- View Factor
- Size Factor

Priority Controlled Rendering

Priority controlled **download manager and renderer**

Content: Use/Application given to focus on specific objects

View: Objects which are in the view frustum

Size: Objects which are bigger in world space

Data-Level: Data which represents a more basic level get higher priority

External: External Culling/Visibility service controls priority

- Content Factor
- View Factor
- Size Factor

"Out of Core" Rendering with PCR

Service Controlled PCR

Uses bidirectional WebSocket connection to distribute computation

"Out of Browser" based Rendering; Using the X3DOM BinaryGeometry Container

BMW F30, 80 Million Polygon Model

Application Example – Desktop

Application Example – Mobile

Combination with textures

Single container type can minimize Donwload-Management

The Fair Sil Frankricht/Hall Haven

Low Bandwidth / Mobile device

Online BG-LOD Examples over 3G

Implementation

Decoding & Rendering:

Open source and Part of X3DOM, available on github http://www. x3dom.org

Patch creation and encoding:

Closed source aopt/instantReality 2.2 (release 3. August 2012)

Windows, Mac & Linux

http://www.instantreality.org

New "Large Datasets" tutorial on x3dom.org page

Free for "non commercial use"

Patch creation and encoding Using the instantReality/aopt tool


```
Scene/Mesh statistics
```

aopt –I foo.x3d –p

aopt –I foo.x3d –J

Patch creation:

aopt –I foo.x3d –u –F subtree:"maxtris(20000)" –N foo-opt.x3d

subtree: Single Node (DEF/id), Node-Type or "Scene"

BinaryGeometry from PrimitiveSet

mkdir binGeo

aopt –i foo-opt.x3d –G binGeo/:sal –x foo-bg.x3d –N foo-bg.html

Tutorial online after siggraph!

Thanks

Demos: http://examples.x3dom.org